
Package: eNchange (via r-universe)
September 8, 2024

Type Package

Title Ensemble Methods for Multiple Change-Point Detection

Version 1.0

Date 2020-02-23

Author Karolos K. Korkas

Maintainer Karolos K. Korkas <kkorkas@yahoo.co.uk>

Description Implements a segmentation algorithm for multiple
change-point detection in univariate time series using the
Ensemble Binary Segmentation of Korkas (2020)
<arXiv:2003.03649>.

License GPL (>= 2)

Imports Rcpp (>= 0.12.12), foreach, iterators, doParallel, methods,
hawkes, ACDm

Suggests MASS

LinkingTo Rcpp

RoxygenNote 7.0.2

Encoding UTF-8

NeedsCompilation yes

Date/Publication 2020-03-20 10:00:03 UTC

Repository https://kakoko1984.r-universe.dev

RemoteUrl https://github.com/cran/eNchange

RemoteRef HEAD

RemoteSha 30bce943c6ab881a9d335bda8d6ccc9ba8ebe29d

Contents
eNchange-package . 2
BinSeg . 3
boot_thresh . 5
EnBinSeg . 6

1

https://arxiv.org/abs/2003.03649

2 eNchange-package

pc_acdsim-class . 9
pc_hawkessim-class . 10
simACD-class . 11
simHawkes-class . 12
Z_trans . 13

Index 15

eNchange-package Ensemble Methods for Multiple Change-Point Detection

Description

Implements a segmentation algorithm for multiple change-point detection in univariate time series
using the Ensemble Binary Segmentation of Korkas (2020) <arXiv:2003.03649>.

Details

We propose a new technique for consistent estimation of the number and locations of the change-
points in the structure of an irregularly spaced time series. The core of the segmentation proce-
dure is the Ensemble Binary Segmentation method (EBS), a technique in which a large number of
multiple change-point detection tasks using the Binary Segmentation (BS) method are applied on
sub-samples of the data of differing lengths, and then the results are combined to create an overall
answer. This methodology is applied to irregularly time series models such as the time-varying
Autoregressive Conditional Duration model or the time-varying Hawkes process.

Author(s)

Karolos K. Korkas <kkorkas@yahoo.co.uk>.

Maintainer: Karolos K. Korkas <kkorkas@yahoo.co.uk>

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
<arXiv:2003.03649>.

Examples

Not run:
pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- seq(0.1,0.95,by=0.025)
pw.acd.obj@lambda_0 <- rep(c(0.5,2),1+length(pw.acd.obj@cp.loc)/2)
pw.acd.obj@alpha <- rep(0.2,1+length(pw.acd.obj@cp.loc))
pw.acd.obj@beta <- rep(0.4,1+length(pw.acd.obj@cp.loc))
pw.acd.obj@N <- 5000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
ts.plot(pw.acd.obj@x,main="Ensemble BS");abline(v=EnBinSeg(pw.acd.obj@x)[[1]],col="red")
#real change-points in grey
abline(v=floor(pw.acd.obj@cp.loc*pw.acd.obj@N),col="grey",lty=2)

BinSeg 3

ts.plot(pw.acd.obj@x,main="Standard BS");abline(v=BinSeg(pw.acd.obj@x)[[1]],col="blue")
#real change-points in grey
abline(v=floor(pw.acd.obj@cp.loc*pw.acd.obj@N),col="grey",lty=2)

End(Not run)

BinSeg An S4 method to detect the change-points in an irregularly spaced time
series using Binary Segmentation.

Description

An S4 method to detect the change-points in an irregularly spaced time series using the Binary
Segmentation methodology described in Korkas (2020).

Usage

BinSeg(
H,
thresh = "universal",
q = 0.99,
p = 1,
z = NULL,
start.values = c(0.9, 0.6),
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
process = "acd",
acd_p = 0,
acd_q = 1,
do.parallel = 2

)

S4 method for signature 'ANY'
BinSeg(
H,
thresh = "universal",
q = 0.99,
p = 1,
z = NULL,
start.values = c(0.9, 0.6),
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
process = "acd",
acd_p = 0,

4 BinSeg

acd_q = 1,
do.parallel = 2

)

Arguments

H The input irregular time series.
thresh The threshold parameter which acts as a stopping rule to detect further change-

points and has the form C log(sample). If "universal" then C is data-independent
and preselected using the approach described in Korkas (2020). If "boot" it uses
the data-dependent method boot_thresh. Default is "universal".

q The universal threshold simulation quantile or the bootstrap distribution quan-
tile. Default is 0.99.

p The support of the CUSUM statistic. Default is 1.
z Transform the time series to use for post-processing. If NULL this is done

automatically. Default is NULL.
start.values Warm starts for the optimizers of the likelihood functions.
dampen.factor The dampen factor in the denominator of the residual process. Default is "auto".
epsilon A parameter added to ensure the boundness of the residual process. Default is

1e-5.
LOG Take the log of the residual process. Default is TRUE.
process Choose between acd or hawkes. Default is acd.
acd_p The p order of the ACD model. Default is 0.
acd_q The q order of the ACD model. Default is 1.
do.parallel Choose the number of cores for parallel computation. If 0 no parallelism is done.

Default is 2. (Only applies if thresh = "boot").

Value

Returns a list with the detected change-points and the transformed series.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
Preprint <arXiv:2003.03649>.

Examples

pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- seq(0.1,0.95,by=0.025)
pw.acd.obj@lambda_0 <- rep(c(0.5,2),1+length(pw.acd.obj@cp.loc)/2)
pw.acd.obj@alpha <- rep(0.2,1+length(pw.acd.obj@cp.loc))
pw.acd.obj@beta <- rep(0.4,1+length(pw.acd.obj@cp.loc))
pw.acd.obj@N <- 5000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
ts.plot(pw.acd.obj@x,main="Standard BS");abline(v=BinSeg(pw.acd.obj@x)[[1]],col="blue")
#real change-points in grey
abline(v=floor(pw.acd.obj@cp.loc*pw.acd.obj@N),col="grey",lty=2)

boot_thresh 5

boot_thresh A bootstrap method to calculate the threshold (stopping rule) in the
BS or EBS segmentation.

Description

A bootstrap method to calculate the threshold (stopping rule) in the BS or EBS segmentation de-
scribed in Cho and Korkas (2018) and adapted for irregularly time series in Korkas (2020).

Usage

boot_thresh(
H,
q = 0.75,
r = 100,
p = 1,
start.values = c(0.9, 0.6),
process = "acd",
do.parallel = 2,
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
acd_p = 0,
acd_q = 1

)

S4 method for signature 'ANY'
boot_thresh(
H,
q = 0.75,
r = 100,
p = 1,
start.values = c(0.9, 0.6),
process = "acd",
do.parallel = 2,
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
acd_p = 0,
acd_q = 1

)

Arguments

H The input irregular time series.

q The bootstrap distribution quantile. Default is 0.75.

6 EnBinSeg

r The number of bootrstap simulations. Default is 100.

p The support of the CUSUM statistic. Default is 1.

start.values Warm starts for the optimizers of the likelihood functions.

process Choose between acd or hawkes. Default is acd.

do.parallel Choose the number of cores for parallel computation. If 0 no parallelism is done.
Default is 2.

dampen.factor The dampen factor in the denominator of the residual process. Default is "auto".

epsilon A parameter added to ensure the boundness of the residual process. Default is
1e-5.

LOG Take the log of the residual process. Default is TRUE.

acd_p The p order of the ACD model. Default is 0.

acd_q The q order of the ACD model. Default is 1.

Value

Returns the threshold C.

References

Cho, Haeran, and Karolos Korkas. "High-dimensional GARCH process segmentation with an ap-
plication to Value-at-Risk." arXiv preprint <arXiv:1706.01155> (2018).

Examples

pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- c(0.25,0.75)
pw.acd.obj@lambda_0 <- c(1,2,1)
pw.acd.obj@alpha <- rep(0.2,3)
pw.acd.obj@beta <- rep(0.7,3)
pw.acd.obj@N <- 3000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
boot_thresh(pw.acd.obj@x,r=20)

EnBinSeg An S4 method to detect the change-points in an irregularly spaced time
series using Ensemble Binary Segmentation.

Description

An S4 method to detect the change-points in an irregularly spaced time series using the Ensemble
Binary Segmentation methodology described in Korkas (2020).

EnBinSeg 7

Usage

EnBinSeg(
H,
thresh = "universal",
q = 0.99,
p = 1,
start.values = c(0.9, 0.6),
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
process = "acd",
thresh2 = 0.05,
num_ens = 500,
min_dist = 0.005,
pp = 1,
do.parallel = 2,
b = NULL,
acd_p = 0,
acd_q = 1

)

S4 method for signature 'ANY'
EnBinSeg(
H,
thresh = "universal",
q = 0.99,
p = 1,
start.values = c(0.9, 0.6),
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
process = "acd",
thresh2 = 0.05,
num_ens = 500,
min_dist = 0.005,
pp = 1,
do.parallel = 2,
b = NULL,
acd_p = 0,
acd_q = 1

)

Arguments

H The input irregular time series.

thresh The threshold parameter which acts as a stopping rule to detect further change-
points and has the form C log(sample). If "universal" then C is data-independent
and preselected using the approach described in Korkas (2020). If "boot" it uses

8 EnBinSeg

the data-dependent method boot_thresh. Default is "universal".

q The universal threshold simulation quantile or the bootstrap distribution quan-
tile. Default is 0.99.

p The support of the CUSUM statistic. Default is 1.

start.values Warm starts for the optimizers of the likelihood functions.

dampen.factor The dampen factor in the denominator of the residual process. Default is "auto".

epsilon A parameter added to ensure the boundness of the residual process. Default is
1e-5.

LOG Take the log of the residual process. Default is TRUE.

process Choose between "acd" or "hawkes" or "additive" (signal +iid noise). Default is
"acd".

thresh2 Keep only the change-points that appear more than thresh2 M times.

num_ens Number of ensembles denoted by M in the paper. Default is 500.

min_dist The minimum distance as percentage of sample size to use in the post-processing.
Default is 0.005.

pp Post-process the change-points based on the distance from the highest ranked
change-points.

do.parallel Choose the number of cores for parallel computation. If 0 no parallelism is done.
Default is 2.

b A parameter to control how close the random end points are to the start points. A
large value will on average return shorter random intervals. If NULL all points
have an equal chance to be selected (uniformly distributed). Default is NULL.

acd_p The p order of the ACD model. Default is 0.

acd_q The q order of the ACD model. Default is 1.

Value

Returns a list with the detected change-points and the frequency table of the ensembles across M
applications.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
Preprint <arXiv:2003.03649>.

Examples

pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- seq(0.1,0.95,by=0.025)
pw.acd.obj@lambda_0 <- rep(c(0.5,2),1+length(pw.acd.obj@cp.loc)/2)
pw.acd.obj@alpha <- rep(0.2,1+length(pw.acd.obj@cp.loc))
pw.acd.obj@beta <- rep(0.4,1+length(pw.acd.obj@cp.loc))
pw.acd.obj@N <- 5000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
ts.plot(pw.acd.obj@x,main="Ensemble BS");abline(v=EnBinSeg(pw.acd.obj@x)[[1]],col="red")

pc_acdsim-class 9

#real change-points in grey
abline(v=floor(pw.acd.obj@cp.loc*pw.acd.obj@N),col="grey",lty=2)
ts.plot(pw.acd.obj@x,main="Standard BS");abline(v=BinSeg(pw.acd.obj@x)[[1]],col="blue")
#real change-points in grey
abline(v=floor(pw.acd.obj@cp.loc*pw.acd.obj@N),col="grey",lty=2)

pc_acdsim-class A method to simulate nonstationary ACD models.

Description

A S4 method that takes as an input a simACD object and outputs a simulated nonstationary ACD(1,1)
model. The formulation of the of the piecewise constant ACD model is given in the simACD class.

Usage

pc_acdsim(object)

S4 method for signature 'simACD'
pc_acdsim(object)

Arguments

object a simACD object

Value

Returns an object of simACD class containing a simulated piecewise constant ACD time series.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
Preprint.

Examples

pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- c(0.25,0.75)
pw.acd.obj@lambda_0 <- c(1,2,1)
pw.acd.obj@alpha <- rep(0.2,3)
pw.acd.obj@beta <- rep(0.7,3)
pw.acd.obj@N <- 3000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
ts.plot(pw.acd.obj@x)
ts.plot(pw.acd.obj@psi)

10 pc_hawkessim-class

pc_hawkessim-class A method to simulate nonstationary Hawkes models.

Description

A S4 method that takes as an input a simHawkes object and outputs a simulated nonstationary
Hawkes model. The formulation of the of the piecewise constant ACD model is given in the
simHawkes class.

Usage

pc_hawkessim(object)

S4 method for signature 'simHawkes'
pc_hawkessim(object)

Arguments

object a simHawkes object

Value

Returns an object of simHawkes class containing a simulated piecewise constant Hawkes series.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
<arXiv:2003.03649>.

Examples

pw.hawk.obj <- new("simHawkes")
pw.hawk.obj@cp.loc <- c(0.5)
pw.hawk.obj@lambda_0 <- c(1,2)
pw.hawk.obj@alpha <- c(0.2,0.2)
pw.hawk.obj@beta <- c(0.7,0.7)
pw.hawk.obj@horizon <- 1000
pw.hawk.obj <- pc_hawkessim(pw.hawk.obj)
ts.plot(pw.hawk.obj@H)
ts.plot(pw.hawk.obj@cH)

simACD-class 11

simACD-class An S4 class for a nonstationary ACD model.

Description

A specification class to create an object of a simulated piecewise constant conditional duration
model of order (1,1). xt/ψt = εt ∼ G(θ2) ψt = ω(t) +

∑p
j=1 αj(t)xt−j +

∑q
k=1 βk(t)ψt−k.

where ψt = E [xt|xt, . . . , x1|θ1] is the conditional mean duration of the t-th event with parameter
vector θ1 and G(.) is a general distribution over (0,+∞) with mean equal to 1 and parameter vector
θ2. In this work we assume that εt ∼ exp(1).

Value

Returns an object of simACD class.

Slots

x The durational time series.

psi The psi time series.

N Sample sze of the time series.

cp.loc The vector with the location of the changepoints. Takes values from 0 to 1 or NULL.
Default is NULL.

lambda_0 The vector of the parameters lambda_0 in the ACD series as in the above formula.

alpha The vector of the parameters alpha in the ACD series as in the above formula.

beta The vector of the parameters beta in the ACD series as in the above formula.

BurnIn The size of the burn-in sample. Note that this only applies at the first simulated segment.
Default is 500.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
Preprint.

Examples

pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- c(0.25,0.75)
pw.acd.obj@lambda_0 <- c(1,2,1)
pw.acd.obj@alpha <- rep(0.2,3)
pw.acd.obj@beta <- rep(0.7,3)
pw.acd.obj@N <- 3000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
ts.plot(pw.acd.obj@x)
ts.plot(pw.acd.obj@psi)

12 simHawkes-class

simHawkes-class An S4 class for a nonstationary ACD model.

Description

A specification class to create an object of a simulated piecewise constant Hawkes model of order
(1,1). We consider the following time-varying piecewise constant Hawkes process (which we term
tvHawkes) λ(υ) = λ0(υ) +

∑
υt<s

α(υ)e−β(υ)(υ−υt), for υ = 1, . . . , T .

Value

Returns an object of simHawkes class.

Slots

H The durational time series.

cH The psi time series.

horizon The time horizon of a Hawkes process typically expressed in seconds. Effective sample
size will differ depending on the size of the parameters.

N Effective sample size which differs depending on the size of the parameters.

cp.loc The vector with the location of the changepoints. Takes values from 0 to 1 or NULL if
none. Default is NULL.

lambda_0 The vector of the parameters lambda_0 in the Hawkes model as in the above formula.

alpha The vector of the parameters alpha in the Hawkes model as in the above formula.

beta The vector of the parameters beta in the Hawkes model as in the above formula.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
Preprint.

Examples

pw.hawk.obj <- new("simHawkes")
pw.hawk.obj@cp.loc <- c(0.5)
pw.hawk.obj@lambda_0 <- c(1,2)
pw.hawk.obj@alpha <- c(0.2,0.2)
pw.hawk.obj@beta <- c(0.7,0.7)
pw.hawk.obj@horizon <- 1000
pw.hawk.obj <- pc_hawkessim(pw.hawk.obj)
ts.plot(pw.hawk.obj@H)
ts.plot(pw.hawk.obj@cH)

Z_trans 13

Z_trans Transformation of an irregularly spaces time series.

Description

Transformation of a irregularly spaces time series. For the tvACD model, we calculate Ut =
g0(xt, ψt) = xt

ψt
, where ψt = C0 +

∑p
j=1 Cjxt−j +

∑q
k=1 Cp+kψt−k + ϵxt. where the last

term ϵxt is added to ensure the boundness of Ut.

Usage

Z_trans(
H,
start.values = c(0.9, 0.6),
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
process = "acd",
acd_p = 0,
acd_q = 1

)

S4 method for signature 'ANY'
Z_trans(
H,
start.values = c(0.9, 0.6),
dampen.factor = "auto",
epsilon = 1e-05,
LOG = TRUE,
process = "acd",
acd_p = 0,
acd_q = 1

)

Arguments

H The input irregular time series.

start.values Warm starts for the optimizers of the likelihood functions.

dampen.factor The dampen factor in the denominator of the residual process. Default is "auto".

epsilon A parameter added to ensure the boundness of the residual process. Default is
1e-6.

LOG Take the log of the residual process. Default is TRUE.

process Choose between acd or hawkes. Default is acd.

acd_p The p order of the ACD model. Default is 0.

acd_q The q order of the ACD model. Default is 1.

14 Z_trans

Value

Returns the transformed residual series.

References

Korkas Karolos. "Ensemble Binary Segmentation for irregularly spaced data with change-points"
Preprint <arXiv:2003.03649>.

Examples

pw.acd.obj <- new("simACD")
pw.acd.obj@cp.loc <- c(0.25,0.75)
pw.acd.obj@lambda_0 <- c(1,2,1)
pw.acd.obj@alpha <- rep(0.2,3)
pw.acd.obj@beta <- rep(0.7,3)
pw.acd.obj@N <- 1000
pw.acd.obj <- pc_acdsim(pw.acd.obj)
ts.plot(Z_trans(pw.acd.obj@x))

Index

∗ eNchange
eNchange-package, 2

BinSeg, 3
BinSeg,ANY-method (BinSeg), 3
BinSeg-class (BinSeg), 3
BinSeg-methods (BinSeg), 3
boot_thresh, 5
boot_thresh,ANY-method (boot_thresh), 5
boot_thresh-class (boot_thresh), 5
boot_thresh-methods (boot_thresh), 5

EnBinSeg, 6
EnBinSeg,ANY-method (EnBinSeg), 6
EnBinSeg-class (EnBinSeg), 6
EnBinSeg-methods (EnBinSeg), 6
eNchange (eNchange-package), 2
eNchange-package, 2

pc_acdsim (pc_acdsim-class), 9
pc_acdsim,simACD-method

(pc_acdsim-class), 9
pc_acdsim-class, 9
pc_acdsim-methods (pc_acdsim-class), 9
pc_hawkessim (pc_hawkessim-class), 10
pc_hawkessim,simHawkes-method

(pc_hawkessim-class), 10
pc_hawkessim-class, 10
pc_hawkessim-methods

(pc_hawkessim-class), 10

simACD-class, 11
simHawkes-class, 12

Z_trans, 13
Z_trans,ANY-method (Z_trans), 13
Z_trans-class (Z_trans), 13
Z_trans-methods (Z_trans), 13

15

	eNchange-package
	BinSeg
	boot_thresh
	EnBinSeg
	pc_acdsim-class
	pc_hawkessim-class
	simACD-class
	simHawkes-class
	Z_trans
	Index

